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ABSTRACT

As the demand for light-weight robots that can

operate in a large workspace increases, the structural
flexibility of the links becomes more of an issue in control .

When the objective is to accurately position the tip while the

robot is actuated at the base, the system is nonminimum
phase. One important characteristic of nonminimum phase

systems is system zeros in the right half of the Laplace
plane. The ability to pick the location of these nonminimum

phase zeros would give the designer a new freedom similar

to pole placement.

This research targets a single-link manipulator
operating in the horizontal plane and modeled as a Euler-

Bernoulli beam with pinned-free end conditions. Using

transfer matrix theory, one can consider link designs that
have variable cross-sections along the length of the beam. A

FORTRAN program was developed to determine the location
of poles and zeros given the system model. The program

was used to confirm previous research on nonminimum phase
systems, and develop a relationship for designing linearly

tapered links. The method allows the designer to choose the

location of the first pole and zero and then defines the

appropriate taper to match the desired locations. With the

pole and zero location fixed, the designer can independently

change the link's moment of inertia about its axis of rotation

by adjusting the height of the beam. These results can be

applied to inverse dynamic algorithms currently under

development at Georgia Tech and elsewhere.

INTRODUCTION

Conu'oller design for collocated systems has been

heavily researched and is well understood compared to

conU'oller design for noncollocated systems. In
noncoilocated systems, uncertainties from model inaccuracies

and modal truncation present fundamental problems with

system performance and stability [18]. The fundamental

difference between collocated and noncollocated systems is
the presence of these RHP zeros. To advance controller

design for noncollocated systems, research needs to be

conducted into the factors that affect the location of these

RHP zeros. This research targets the relationship between

RHP zeros and structural design.

Although research on RHP zeros is limited, there has

been some notable research done in the past. In 1988, Nebot

and Brubaker [13] experimented with a single-link flexible
manipulator. In 1989, Spector and Flashner [19] investigated

the sensitivity effects of structural models for noncollocated

control systems. In 1990, Spector and Flashner [18] again

studied modeling and design implications pertinent to
noncollocated control. Also in 1990, Park and Asada

[15],[14] investigated a minimum phase flexible arm with a

torque actuation mechanism, in 1991, Park, Asada, and Rai

[ I ] expanded their previous work on a minimum phase

flexible arm with a torque a'ansmission device.

The underlying issue in noncollocated control is how

to deal with the RHP zeros in the control algorithm. A

major step in solving the problem is understanding what

design parameters can be used to change the location of these

RttP zeros. This research targets the relationship between

RHP zero location and structural design. Specifically, how

do changes in the shape of the structure (link) affect the
location of these zeros?

Traditionally links are designed with uniform

properties along the length because analytic solutions to this

problem exist. A link with variable cross-section cannot be

solved analytically, but with aid of a computer a numerical

approximation can be found. The key to an accurate

numerical solution is a good model of the system.

The research presented in this paper models a single-

link flexible rotary manipulator as a pinned-free beam.

Transfer matrix theory was used to generate a beam with
variable cross-section. FORTRAN code was written to

generate the model and evaluate the system for the location

of RHP zeros. The program was used to examine the

relationship between link shaPe and RHP zero location. This



relationship can be directly applied to controller design using
the inverse dynamics approach researched at Georgia Tech
and elsewhere.

TRANSFER MATRIX TIIEORY

Transfer matrices describe the interaction between two

serially connected elements. These elements can be beams,
springs, rotary joints, or many others. In 1979 Book,
Majette, and Ma [6] and Book [41 (1974) used transfer
matrices to develop an analysis package for flexible
manipulators. They used transfer matrices to serially connect
different types of elements to model the desired manipulator.
Of interest in this paper is how to connect similar types of
transfer matrices (beam elements) to model a beam with
different cross-sectional area. Pestel and l.,eckie [16] provide

an in depth discussion of transfer matrix derivations and
applications.

Transfer matrices can be mathematically expressed by
Equation 3.1. The state vector u, is given by the state vector
u_._multiplied by the transfer matrix B.

u, = [B,]u,_, (3.1)

When elements are connected serially, the states at the
interface of two elements must be equal. By ordered
multiplication of the transfer matrices, intermediate states can
be eliminated to determine the transfer matrix for the overall

system.
The concept of state vector in transfer matrix theory

is not to be confused with the state space form of modern
control theory. The state equation in modern control theory
relates the states of the system as a function of time. In
transfer matrix theory the state equation relates the states at
various points along the serial chain of elements. The
independent variable in a transfer matrix is the Laplace or
Fourier variable with units of frequency, not time. The
elements of the matrix B depend on the frequency variable
and therefore the states will change as the system frequency
changes. The mansfer matrix B essentially contains the
(Laplace or Fourier) transfor_ned dynamic equations of
motion that govern the element in analytic form. Therefore,
analytical solution of the transfer matrix alone does not
involve numerical approximations to the partial differential
equation modelling the beam. This is desirable since
numerical approximations introduce error into the solution.

A single-link manipulator as pictured in Figure 3.1
can be thought of as a beam with torque applied at one end
and free at the other end. There are several steps to
determine the RHP zeros and imaginary poles of this system.
First, develop a model for the beam. Second, determine the
appropriate boundary conditions. Third, determine the system
input and output. Fourth, solve for the system zeros. The
following sections will discuss each of these steps in more
detail.

A link with nonuniform cross-sections can be

modeled as a series of discrete elements. While the shape of
these elements is similar, the size can vary to allow for
changes in cross-section. The appropriate element to model

a flexible link is an Euler-Bemoulli beam element. The
Euler-Bemoulli model neglects the effects of rotary inertia
and shear deformation in the element. [1 !]. This
assumption is generally valid for modeling beams whose
length is roughly ten times the thickness. Flexible
manipulators have long, slender links which are appropriately
modeled under the Euler-Bernoulli assumption.

Transfer matrices are derived from the equation of
motion for a given element. For a uniform Euler-Bernoulli
beam element, the equation of motion transformed to the
frequency domain has the form:

<t'w(z,t0) = I,o___22 _z,o)
dx 4 E1

where,

p =
unit length

radians/second
E --
l --

area moment of inertia

Notice the equation is fourth order thus requiring four states
to describe the solution in transfer matrix form. The state
vector for the Euler-Bemoulli clement is:

mass density per

frequency in

Young's modulus
Cross sectional

U =

displacement'
slope

moment
shear force

(3.3)

The first two elements of the state vector are displacements
(w and ¥) while the last two elements are forces (V and M).
This arrangement of states is characteristic of transfer matrix
theory.

An analytic solution to Equation 3.2 can be found
when the element has uniform properties (ie. constant cross-
section, mass density, and stiffness). Equation 3.4 gives the
transfer matrix for a uniform Euler-Bernoulli element. Each
element of Equation 3.4 is a function of frequency and must
be reevaluated as the frequency of interest changes.

[l_!cs IG aG ale.co ac..__ aG
1
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(3.4)



where.

c o = _(co_13 + cosp)

Ct = ±(sinhl3 + sinp)
2IS

(3.5)

(3.6)

describe each clement (ie. element stiffness). Next the
system matrices must be assembled to produce a set of linear

algebraic equations. Finally the linear equations are solved

to get an approximate solution to the system under

consideration. These boundary conditions are applied to the
overall transfer matrix for the system and the appropriate
state variables are set to zero.

C2 - _(coshp - ¢osp) (3.7)

c 3 - i_,(st_13 - strip) (3.8)

and

_ 12
134 c°21'P (3.9) a =- (3.10)
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With the transfer matrix for the fundamental beam

elements, one can combine these elements serially to

generate a model for the link. Figure 3.3 illustrates how a

simple model can be constructed for a tapered beam.

Although only two elements are considered here, more

elements can be added to better approximate the shape of the

link. Since the states at interface ul are the same for both

elements, ul can be eliminated to obtain an overall transfer
matrix for the beam:

u2 :[B2][Bjlu o (3.13)

Eliminating one state simply illustrates the point that this

multiplication can be carried out to eliminate all intermediate
states in a model with more elements.

As previously mentioned, transfer matrices themselves

are not numerical approximations. The transfer matrix for a

Euler-Bemoulli beam contains the analytic solution for a

uniform beam element. It is not an assumed modes solution.

The approximation made in using transfer matrix theory

involves the modeling of the beam and solution of the

equations. To generate the model of a link with variable

cross-section, the size of the elements must vary. The
interface of two different size elements will be discontinuous.

In Figure 3.3, interface 1 is discontinuous between elements

A and B. These discontinuities are the major approximation

when using transfer matrices to model a beam. This

approximation can be minimized by using more elements to
model a nonuniform beam. As more elements are added to

the model, the discontinuities between elements will decrease

thus reducing the effects of this approximation on the results.

Transfer matrix theory as used to represent a variable

cross section is similar to Finite Element Analysis (FEA). In

FEA, first the system must be discrctized. Then an
appropriate interpolation function must be selected to

=if!-';i]l,10.
[OL.L , -o

(3.14)

Since this research targets the location of RHP zeros the

system output is tip position, and the system input is joint

torque. Considering the system input and output, the overall
system transfer matrix will have the form:

tO J_.t t -o

(3.15)

in the above equation, w L is the system output which

corresponds to tip position, and z is the system input

corresponding to joint torque at the base of the manipulator.

With the system input and output chosen, Equation

3.15 can be simplified to relate system input to system
output:

,v = B,2B.a. - n,@_,n. + Bt3B_.B_- n,_n,,n_: •

N
wt=-

(3.16)

Where B,j are elements of the overall transfer matrix in

Equation 3.15. When the frequency is found which renders

the function inside the brackets zero the output at that

frequency will always be zero regardless of the input;

therefore, the zeros of the bracketed term are the system
zeros,

To search for RHP zeros, one must consider what

type of frequency to input into Equation (3.16). Using the

relationship which defines the Laplace variable, s

$ = j_ (3.17)

one can easily determine to should have the form:

= 0 -jb where O<b<= (3,18)



That is, imaginary negative values of to will result in purely

real positive values of s. Thus searching Equation 3.16 with

frequencies of the form of Equation 3.17 one can find the

location of the RHP zeros on the real axis.

Although the location of RHP zeros is of primary

concern in this research, knowledge of pole location will help

in analysis of the results. Since the system damping is

ignored, the poles will lie on the imaginary axis of the s-

plane in complex conjugate pairs. The location of these

poles can be determined by simply searching the positive

imaginary axis of the s-plane. Considering the applied

boundary conditions, one can extract two homogeneous

equations from Equation 3.14 to get the homogeneous

system:

/:t ;:]/:/  3,9,
The poles (eigenvalues) of the system are those values of to
which make the determinant of the sub-transfer matrix in

Equation 3.19 equal to zero (see reference [61 for a detailed

explanation). For a two by two matrix this determinant is

simply:

g(t_) -- B32B44 - B_B42 (3.20)

Referring to Equation 3.17, one finds that Equation 3.20 is

the denominator of the input/output transfer function which is

to be expected. To find the values of the purely complex

poles, one must search Equation 3.20 for its roots.

According to the definition of s, to must have the form:

to = b + jO (3.21)

Searching over a range of values for b will give the poles in

that range. With the zero and natural frequency functions

determined, the problem remains to implement a computer

solution to find the RHP zeros and imaginary poles.

RESULTS

Unless otherwise specified, several dimensions remain

the same from one study to the next (referred to as nominal

dimensions). The overall length of the beams is 40 inches,

and the height (which remains constant over length) is 1

inch. The material properties are selected to be those of

aluminum: modulus of elasticity, E, is 10E6 psi, and the

density is 9.55E-2 Ibm/in 3.

Although the model was limited to uniform elements,

there were any number of combinations one can find to

represent the system. This study examined two different

methods for modeling a linearly tapered beam. As shown in

Figure 4.1 the link was tapered along the length in the width

dimension while the height was held constant. The taper was

described by two dimensions: the width at the base, A, and

the width at the tip, B. The degree of taper, R=A/B, was

used to compare different designs.

Using Method I to model the tapered link, the beam

was divided into elements of equal length. For a three

element model with length L, each element will have length

L/3. The height of each element was the same, while the

width of each element changed linearly as a function of x.

Figure 4.2 presents modeling Method 1.

Using Method 2 to model the tapered link, the beam
was divided into elements so the first and last element have

length one-half of the intermediate elements. For a three

element model with length L, the first and last elements will

have length L/4 and the middle element will have length L/2.

Again the height of each element was the same, while the

width of each element changed linearly as a function of x.

Figure 4.3 presents modeling Method 2.

Figures 4.2 and 4.3 illustrate the main difference

between the two modeling methods. Method 2 compensated

the elements at each end for meeting the specified end
widths A and B. In both methods the width of intermediate

elements was determined by the width of the tapered beam at
the midpoint of each element. Since the end elements meet

the specified A and B, the tapered link will not pass through

the midpoint of these two elements. Method 2 compensates

' ,r this exception by making the end element lengths one

half the length of the other elements.

To compare these two different modeling methods for

a linearly tapered beam, a beam with nominal dimensions
and A=0.75 inches and B=0.25 inches was studied. This

corresponds to R--3. The number of elements was increased

with each method until the zeros and poles converged. Table

4.3 presents the results from Method 1 where all elements

were of equal length, and Table 4.4 presents the results from

Method 2 where the end elements were half the length of all

other elements. Although only two methods are considered
in this research, there are many different ways to discretize a
nonuniform link.

The two methods were evaluated based on an error

function. When the tapered beam was modeled with 80

elements, both methods converged to nearly identical values

for the poles and zeros. These values, when NE=80, were
taken to be the "correct' values and other cases were

compared to this case. The error, t, was defined for the

zeros as:

(4.2)

where i refers to the i'hzero

A similar definition was used for the poles. The

value of • at the top of each column represents the
maximum of all individual errors in each column. As the

tables show, Method 2 provided better results for the same

number of elements. In each table, one column was shaded

to distinguish it as the number of elements needed to get the

error under 1%. For Method 2, this column corresponded to

NE=I0 as opposed to NE=20 for Method 1. Thus,

compensating the end elements did provide a better model of

a linearly tapered beam, and this method was used in the

following studies unless specified otherwise.

When comparing different link designs to evaluate
pole/zero location as a function of link shape, it was



necessary to kccp some parameter constant to aid in the
evaluation. For a single-link manipulator rotating in the
horizontal plane, the link's mass moment of inertia about its
axis of rotation, I_, was of importance. This parameter
directly affected the dynamic equations of motion and was an
important design parameter in terms of motor selection. In
the following studies, several link designs were evaluated for
a given value of Ir A tapered link's moment of inertia about
its axis of rotation in terms of the links parameters: L, A, B,

H, and P is found to be:

ly = PH(AS + A2B + AB 2 + B3 + 4AL 2 + 12BL 2)
48

(4.3)

For a given tapered link design, one can use Equation 4.3 to

determine I_. Knowing I7, one can change the value of A
and solve Equation 4.3 for B. Since the equation was cubic
in B, the commercial package Mathematica was used to
solve for B. Following this method, a group of tapered link
designs were generated all with the same Ir

The first study investigated several tapered link
designs with nominal dimensions and all designs having
I7=764.05 in-lb-sec 2. Table 4.5 presents the raw data for
each of these designs. Even with Iv held constant, it was still
difficult to interpret the data. To aid in developing a
relationship between zero location and link shape, the zeros
were normalized with respect to the first pole for each
design. The first pole is an important parameter in control
system design, and normalizing the zeros with respect to the
first pole aided in the interpretation of the results. Table 4.6
presents the normalized data for those designs with Iy=764.05
in-lb-sec 2. The second study presents data for several link
designs with nominal dimensions and ]y=1528.1 in-Ib-see 2.
Table 4.7 shows the raw data for these link designs and
Table 4.8 shows the normalized data for these designs.
Figures 4.4 and 4.5 show pole/zero maps for selected values

of R for Iy=764.05 and Iy=1528.1 respectively.
Several patterns were evident by examining the raw

data. First as a general rule, both the poles and zeros
increased (moved away from the origin) as the taper on the
beam increased. Increasing the taper effectively moved more
of the link mass closer to fl_e ba_. Increasing the value of
the poles is often desirable to push them out of the system
bandwidth and increase system response speed. The ordering
of poles and zeros was the second pattern recognized. In a
collocated system, the poles and zeros will both lie on the
imaginary axis in complex conjugate pairs and in an
alternating order. This means, along the imaginary axis, the
poles and zero are found in the order p_, z,, p2,z_, etc. or vice
versa. Previous research [18] has found this alternating order
of poles and zeros does not hold for nonminimum phase
systems. Referring to Table 4.5, notice the order of the
magnitude of poles and zeros was: z,,p,,p2,z:,p3,zs,p4,p_,z4 ....
P2 jumped in front of za, and the same occurred for Ps- This
reordering of poles and zeros can be critical as accurate
knowledge of the pole/zero order is important for control
system design.

Important information was learned from examining
the relationship between the taper ratio, R, and the values of

the normalized zeros. Figure 4.8 better illustrates this point
showing both polynomial fits on the same graph. Even
though the coefficients were different for each polynomial fit,
the curves were nearly identical.

This illustrates an important relationship in the design
of tapered links. For a given ratio R, the normalized zero
will always remain the same. The designer can choose the
location of the first pole and zero, determine the normalized
zero, and then using Figure 4.8 find the appropriate taper
ratio R. Of course there are constraints on this process. A
ratio less than one corresponds to a taper with B greater than
A, which is usually undesirable. At the other end, R is
limited by the value of H. If A is larger than the value of tl.
the link will be wider at the base than it is tall, and the

assumption that the link is stiff in the vertical plane will no
longer be valid. Although the designer can choose the
pole/zero relationship, the values of normalized zeros are
limited to approximately 0.72-0.82 (according to Figure 4.8).

A simple verification of the above relationship is the
uniform beam which has no taper. According to the stated
relationship, the normalized first zero should be the same for
all uniform beams. Table 4.9 presents the results for several
uniform beam designs. All cases had nominal dimensions.
The normalized zero in all cases was 0.726 which confirmed

the normalized zero will not change as long as R is constant.
Previous studies demonstrated how the designer can

choose the pole/zero relationship and then determine the
appropriate taper design from the ZERO results. This study
presents the designer with another freedom. Once the taper
is chosen, the designer can change the link to independe,ltly
adjust the value of Ir Table 4.10 presents the results of a
study performed on designs with L_0 inches, and all
designs have the same taper. The height of the link was
changed to adjust the value of Ir

One should notice that the pole and zero locations of

all designs in Table 4.10 were the same, yet the value of Iy
changed with adjustments in link height. Since the
adjustment of H is out of the plane of motion, it had no
effect on the location of poles and zeros. Combining this
with the results from the previous study, the designer can
effectively choose the location of poles and zeros and
independently adjust the links moment of inertia about its
axis of rotation to meet the needs of the particular system.

CONCLUSIONS

Program ZERO was developed as a tool to locate the
poles and zeros of a single-link manipulator modeled as a
pinned-free Euler-Bernoulli beam. The program used
transfer matrix theory to allow for variable cross-sections
granting the designer new freedom in analysis of nonuniform
link designs. The results were shown to be very accurate
when system pole location was compared to analytic
solutions for uniform beams. Several results from previous
studies were conFumed with this research.

First, the reordering of poles and zeros was confirmed
for nonminimum phase systems. Accurate knowledge of
pole/zero order is critical for proper control system design.
In conjunction with this, Tables 4.3 and 4.4 show that even
for very few elements in the model, the program still predicts
the proper order of poles and zeros.



Second, the studies presented suggested the
nonminimum phase characteristics could not be eliminated by
changing the structural design of the link. The system will
be nonminimum phase above a finite frequency dictated by
the location of the first nonminimum phase zero. It may be
possible that this frequency is out of the operating range and
not of concern to the designer.

The major contributions of this research are the
development of the ZERO program to determine zero and
pole location for a single-link nonuniform flexible
manipulator, and formulation of a design procedure to place
the fast pole and zero and independently change the value of
the link's moment of inertia about its axis of rotation to meet

the needs of the system.
Program ZERO was set up specifically for pinned-free

boundary conditions of the model and determines pole and
zero location based on a frequency range entered by the user.
Linearly tapered beams were studied in this research, but any
type of nonuniform beam can be analyzed by program
ZERO. Slight modifications would also allow for different
boundary conditions.

The design procedure for tapered beams allows the
designer to choose the first pole and zero subject to certain
physical constraints. These physical constraints only allow
for approximately 25% variation in R according to Table 4.6.
This zero to pole ratio defines a particular taper ratio
according to the collected data. Keeping the ratio the same,
the size of the taper can be changed to get the proper
magnitude of the pole and zero. With the pole and zero
placed, the height of the beam can be changed to adjust the
link's moment of inertia about its axis of rotation. This

procedure can be used to design tapered links to meet the
particular requirements of the system.

Program ZERO was designed to model a single-link
manipulator modeled with pinned-free boundary conditions.
This is a simplified model, but it was necessary to show
transfer matrices yield good results for this case before
progressing to more complicated problems. Now that
transfer matrices have proven useful to solve for zero
location, future work exists to extend the results of this
research.

First, the program could be modified so the user
could input the desired boundary conditions which best
represent the system. This could include hub inertia or end-
point mass. Second, the program could be extended to muhi-
link designs to predict pole and zero location for different
configurations. Transfer matrices have been derived for
rotary joints and many other elements. The DSAP package
developed by Book, et. at. [6] handles multi-link models and
would be a good reference. Finally, the results for tapered
link designs could be applied to the inverse dynamic
algorithm developed by Kwon and Book [9]. This method
requires mode shapes for the assumed modes and uses
pinned-pinned boundary conditions, which can also be found
using transfer matrix techniques as shown in Book, et al.[6].
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Table 4.3: Results From Method 1

Zero NF_3 NE=5 NE= 10
Pole (._,o_) (_s.6_) (_1.9,_)

I 13.91 13.99 13.73
13.64 15.95 16.05

2 45.57 55.99 57.28
38.08 43.24 46.19

3 121.2 122.0 134.2
88.16 85.31 92.52

4 210.8 223.2 242.9
137.5 147.5 154.9

5 357.8 383.8 382.I
219.5 234.7 233.3

NE=40 NE=80
0_o.1%)

IIIIIII IIIIII

: 13.69 13.68 13.68

|3.96 15.92 15.91

56.84 56.83

i:id6.2i: ::_ 46.14 46.11

133.8 133.6 133.5
93,_0 93.13 93.09

244.2 244.1
157.0 157.0

:389,,4 388.9 388.7
237./ 237.9 237.8

Table 4.4: Results From Method 2

Zero

Pole

NE=3

(,_<16%)

13.09

15.57

53.77

38.66

3 120.4

85.88

4 233.6

154.4

360.6

220.3

NE=5 NE_IO
(,_.0%) _(_0.4%) i

13.49 3,64

15,82

56.12 56,62

45.82 46.03

135.1 133.0

93.17

234.7 243.4
148.3 156.6

384.6 388.2
231. I

NE=20

(e._O.1%)

13.67

15.90

13.68

15.91

NE=80

13.68

15.91

56.78 56.82 56.83

46.09 46.10 46.10

133.4 133.5 133.5

93.03 93.06 93.06

243.9 244.1 244.1

156.9 156.9 156.9

388.3
237.7

388.6

237.7

388.6

237.8

Table 4.5: Tapered Beams With Iy=764.05

Zero A=.375 A=.4 A=.5 A=.6 A--.7 A=.8 A=.9 A= 1
Pole B=.375 B=.367 B=.333 B=.3 B=.267 B=.233 B=.2 B=.167

1 7.745 8.153 9.762 11.34 12.90 14.44 15.98 17.50
10.68 I1.04 12.46 13.84 15.21 16.60 18.03 19.52

2 41.85 43.15 47.38 51.37 55.05 58.45 61.60 64.51

34.59 35.48 38.80 41.87 44.73 47.41 49.94 52.36

3 103.4 105.9 115.0 123.1 130.2 136.4 141.7 146.2

72.18 73.88 80.17 85.75 90.75 95.19 99.14 102.6

4 192.2 196.6 212.7 226,6 238.6 248.7 257.1 263.6

123.4 126.2 136.5 145.5 153.4 160.1 165.9 170.6

5 308.4 315.3 340.5 362,0 380.3 395.5 407.8 416.9

188.3 192.6 208.0 221.2 232.6 242.3 250.3 256.5

I0



Table 4.6: Normalized Data For Iy=764.05

Zcro R= 1.00 R= 1.09 R= 1.50

I 0.7252 0.7385 0.7835

2 3.919 3.909 3.803

3 9.682 9.592 9.230

4 18.00 17.81 17.(}7

5 28.88 28.56 27.33

R=2.00 R=2.62 R=3.43 R=4.50 R=5.99

0.8194 0.8481 0.8699 0.8863 0.8965

3.712 3.619 3.521 3.417 3.305

8.895 8.560 8.217 7.859 7.490

16.37 15.69 14.98 14.26 13.50

26.16 25.00 23.83 22.62 21.36

Table 4.7: Tapered

Zero

Pole

1

Beams With l_,=1528. !

A=.75

B=.75

15.49

21.35

A=.8

B=.733

16.31

22.08

A=I.I

B=.633

21.11
26.30

A=I.2

B=.600

=,. E =

A=.9 A=I.0

B=.7 B=.667

17.92 19.52

23.51 24.92

90.50 94.76

74.35 77.60

221.2 230.1

154.2 160.3

409.9 425.4

263.I 273.I

656.8 681.0

401.I 415.9

22.68

27.68

83.71 86.03 98.83 102.7

69.16 70.95 80.73 83.74

206.7 211.7 238.4 246.2

144.4 147.7 166.1 171.5

384.4 393.2 439.9 453.2

246.8 252.5 282.4 291.0

703.3

429.6

616.7

376.7

630.6

385.1

724.0

442.4

II



Table 4.9: ZERO Results For Uniform Beam Designs

Zero

Pole

W--0.25"

5.163

7.116

W--0.5"

10.33

14.23

W=0.75"

15.49

21.35

2 27.90 55.80 83.7 I

23.06 46.12 69.19

3 68.90 137.8 206.7

48.12 96.23 144.3

4 128. ! 256.2 384.4

82.28 164.6 246.8

411.1
251.1

5 205.6

125.6

616.7

376.7

Table 4.10:

Zero

Pole

Variable Height

H= 1.0"

11.34

13.84

H=I.5"

11.34

13.84

Designs

H=2.0"

11.34

13.84

2 51.37 51.37 51.37

41.87 41.87 41.87

3 123.1 123.1 123.1

85.75 85.75 85.75

4 226.6 226.6 226.6

145.5 145.5 145.5

5 362.0

221.2

ly

362.0

221.2

764.05 1146.1

362.0

221.2

1528.1
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